If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=-16t^2+40t+6
We move all terms to the left:
10-(-16t^2+40t+6)=0
We get rid of parentheses
16t^2-40t-6+10=0
We add all the numbers together, and all the variables
16t^2-40t+4=0
a = 16; b = -40; c = +4;
Δ = b2-4ac
Δ = -402-4·16·4
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{21}}{2*16}=\frac{40-8\sqrt{21}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{21}}{2*16}=\frac{40+8\sqrt{21}}{32} $
| 12*3/n+18-8=19 | | 5x+1x5x+1/3=5x+1x7 | | t2-5t+4=0 | | x^2+52x-7300=0 | | 30*5+12(10+y)/15y=15 | | 30x+12(15−x)15=1830x+12(15−x)15=18 | | 2•(20x+1)=4x–3 | | 30x+12(15−x)/15=1830x+12(15−x)15=18 | | -5x^2+0x+3=0 | | 5•(x–15)=6x+19 | | 8x+18=4x+7 | | X(1-3x)=8x-1 | | 45=x+x/2 | | n/8-56+24=32 | | 5x-157=2x | | 2x(7-x)=40 | | n^8-56+24=32 | | 180-5x=8x-2x180 | | 7=(4-x)-8 | | 6t2+5t+1=0 | | 15x-x=2x+60 | | n*6-25+4=15 | | 4(n=2)=5(n+1) | | 9/13=x/9 | | 9x-45=-6x | | -8+2x=-16÷8x | | 9x-45=-9x | | 3x+13=x+8 | | -9x-45=-9x | | 2p=31+7 | | 9x-15=-9x | | -5/9=x-2 |